Skip to main content Skip to secondary navigation
Journal Article

Use of multifidelity training data and transfer learning for efficient construction of subsurface flow surrogate models

Abstract

In subsurface flow settings, data assimilation/history matching presents computational challenges because many high-fidelity models must be simulated. Various deep-learning-based surrogate modeling techniques have been developed to reduce the simulation costs associated with these applications. However, to construct data-driven surrogate models, several thousand high-fidelity simulation runs may be required to provide training samples, and these computations can make training prohibitively expensive. To address this issue, in this work we present a framework where most of the training simulations are performed on coarsened (low-fidelity) geomodels. These models are constructed using a flow-based upscaling method. The framework entails the use of a transfer-learning procedure, incorporated within an existing recurrent residual U-Net architecture, in which network training is accomplished in three steps. In the first step, where the bulk of the training is performed, only low-fidelity simulation results are used. The second and third steps, in which the output layer is trained and the overall network is fine-tuned, require a relatively small number of high-fidelity simulations. Here we use 2500 low-fidelity runs and 200 high-fidelity runs, which leads to about a 90% reduction in training simulation costs. The method is applied for two-phase subsurface flow in 3D channelized systems, with flow driven by wells. The surrogate model trained with multifidelity data is shown to be nearly as accurate as a reference surrogate trained with only high-fidelity data in predicting dynamic pressure and saturation fields in new geomodels. Importantly, the network provides results that are significantly more accurate than the low-fidelity simulations used for most of the training. The multifidelity surrogate is also applied for history matching using an ensemble-based procedure, where accuracy relative to reference results is again demonstrated.

Author(s)
S. Jiang
L. Durlofsky
Journal Name
Journal of Computational Physics
Publication Date
2023
DOI
10.1016/j.jcp.2022.111800